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SUMMARY

In this general lecture, we shall �rst outline the way computational non-Newtonian �uid mechanics
di�ers from conventional computational �uid dynamics (CFD). We do this by brie�y outlining the
major historical developments in this relatively new �eld of science, which is conveniently called
Computational Rheology. To illustrate essential features, we limit the discussion to the Oldroyd B,
UCM and Phan-Thien=Tanner constitutive models.
In order to provide a serious challenge to existing numerical codes, we describe some recent

unpublished experimental results on �ow through a contraction of constant viscosity (Boger) and also
shear-thinning elastic liquids. Both planar and axisymmetric contractions are of interest, and pressure
drops and observed �ow structures provide the relevant points of contact between experiment and
numerical prediction.
Numerical codes developed at UWS involving a hybrid �nite-element=�nite-volume scheme for

Oldroyd B and Phan-Thien=Tanner constitutive models are applied to the contraction-�ow problems and
an encouraging agreement is demonstrated between theory and experiment. Speci�cally, the dramatic
experimental di�erences between �ow in planar and axisymmetric contractions and between constant
viscosity and shear-thinning polymer solutions are mirrored in the numerical predictions, at least in a
qualitative sense.
Notwithstanding these encouraging developments, the review ends with a realistic assessment of the

challenges still awaiting computational rheologists, with particular reference to the choice of constitutive
model and the possibility of further re�nements to the numerical techniques. Copyright ? 2003 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this presentation, our aim is to outline the distinctive computational �uid dynamics (CFD)
challenges posed by Computational Rheology. Our background assumption and expectation is
that the audience will have a very detailed knowledge of modern developments in CFD, but
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may be less aware of the novel problems which arise when the �uids are non-Newtonian and
viscoelastic.
The basic challenge confronting computational rheologists is to be able to predict and

simulate how complex non-Newtonian �uids behave when they �ow in complex geometries.
Much of the research in the �eld has been driven by industry, so the �uids of interest include
molten plastics and polymer solutions, as well as industrial suspensions, multigrade oils, liquid
detergents, printing inks and various food and confectionary products. The processes of interest
include injection moulding, extrusion, coating, mixing and lubrication.
It is clear that the �eld is strongly motivated and is very broad in its scope. At the same

time, the challenges of complex rheology turn up in most industrial processes, and we are able
to be reasonably focused concerning the distinctive numerical challenges of computational
rheology. Indeed, in this presentation, we purposely choose to be fairly restrictive in our
choice of non-Newtonian liquids and �ow geometries. We shall see that, even within this
constraint, the challenges facing computational scientists are at the same time both di�cult and
fascinating. Certainly a simple carry-over of conventional ‘Newtonian’ CFD wisdom to this
more general �eld is not possible and attempts to do so have often led to frustration and failure.
In the next section, we set the scene by describing important events in the historical devel-

opment of this relatively new �eld, drawing heavily on a recent historical treatise by Tanner
and Walters [1] (see also the popular article by Crochet and Walters [2]). We shall then
outline some recent experimental data on the �ow of polymer solutions through both planar
and axisymmetric contractions. These surprisingly complex data provide the backdrop for our
description of some recent work on CFD carried out within the University of Wales Insti-
tute of non-Newtonian Fluid Mechanics. The detailed discussion is purposely limited to those
studies which directly relate to the contraction �ow experiments.
The case studies chosen indicate an encouraging agreement between experiment and simu-

lation. However, the presentation ends on a note of realism and is happy to acknowledge that
many di�cult challenges remain.

2. HISTORICAL DEVELOPMENTS

Before we trace in some detail the major historical developments in the �eld to provide
a present-day backdrop, we must �rst highlight some popular constitutive equations for the
non-Newtonian elastic liquids of interest.
In the post second-world war years, there was an initial and laudable search for constitutive

equations which possessed the same level of generality as that provided by the Navier–Stokes
equations for Newtonian �uids. However, it soon became evident that the equations thus
derived (like those generated for the so-called ‘simple �uid’ of Coleman and Noll (see, for
example, Reference [3]) had no hope of utility in the type of complex �ow problems we
have outlined. This led to some disa�ected desertions, but those that remained soon realized
that some compromise had to be struck between generality and tractability. So a search began
for constitutive equations which were general enough to model real behaviour in simple
(rheometrical) �ows and yet were simple enough to allow numerical solutions to be obtained
for �ow in complex geometries, like those associated with contraction �ows.
In the early days, the so-called upper-convected Maxwell (UCM) and Oldroyd B models

became the favourites for study, partly because they were the ‘bottom-line’ of acceptable
simplicity and also because they seemed to be able to mimic rheometrical behaviour for
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a class of polymer solutions which became popular in the late 1970s and have remained
so ever since. These so-called Boger �uids [4] consist of very small concentrations of high
molecular weight polymers in very viscous Newtonian solvents. The attraction of these model
�uids centred on the fact that they essentially possessed a constant shear viscosity �0 in a
steady simple shear �ow, while at the same time being highly elastic, with a high �rst normal
stress di�erence N1 in shear �ow and an extensional viscosity �E greatly in excess of the
so-called Trouton value found in Newtonian liquids (i.e. three times the shear viscosity �0).
Interestingly, Oldroyd, who was essentially responsible for introducing both the UCM

and Oldroyd B models, was Professor of Applied Mathematics at the University of Wales,
Swansea, from 1953 to 1965. He had produced his classic paper [5] on constitutive modelling
just before his arrival at Swansea, but he continued to produce seminal work at Swansea
and a number of research students have cause to be grateful for his sympathetic and inspired
supervision, including one of the present authors (KW).
In view of their historical signi�cance and also their continued popularity in computational

rheology, it is important that we introduce the Oldroyd B equation at this juncture.
Let �ik be the stress tensor, dik the rate-of-strain tensor, p an arbitrary isotropic pressure

(for the incompressible �uids of interest here) and �ik is the Kronecker delta. The equations
of state for the Oldroyd B model have the form

�ik =−p�ik + Tik (1)

Tik + �1
∇
Tik =2�0[dik + �2

∇
dik] (2)

where Tik is known as the extra-stress tensor and the triangle signi�es the non-linear upper-
convected derivative introduced by Oldroyd [5] (see for example, Reference [3, Chapter 8]).
The coe�cients �0, �1 and �2 are material constants. The UCM model is given by �2 = 0.
The equations of state for the Oldroyd B model can be written in the alternative form

Tik = T
(1)
ik + T (2)ik (3)

T (1)ik =2�0
�2
�1
dik (4)

fT (2)ik + �1
∇
T (2)ik =2�0

[�1 − �2]
�1

dik (5)

where f is unity for the Oldroyd B model (cf. Equation (11)). Often, the ‘Newtonian’ viscos-
ity (�2 = �0�2=�1) appearing in Equation (4) is called the ‘solvent’ viscosity and (�1 = �0(�1−
�2)=�1) appearing in Equation (5) is accordingly called the ‘polymer’ viscosity.
For a steady simple shear �ow with Cartesian velocity components given by

vx = �̇y; vy = vz = 0 (6)

the corresponding stress distribution for the Oldroyd B model is

�xy = �̇�0
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�xx − �yy =N1(�̇) = �0(�1 − �2)�̇2
�yy − �zz =N2(�̇) = 0 (7)

For a uniaxial extensional �ow with velocity components

vx = �̇x; vy = − �̇
2
y; vz = − �̇

2
z (8)

the stress distribution is

�xx − �yy = �xx − �zz = 3�0[1− �2�̇− 2�1�2�̇2]�̇
[1− 2�1�̇][1 + �1�̇] (9)

We see from (7) and (9) that the Oldroyd B model predicts a constant shear viscosity �0,
a quadratic �rst normal stress di�erence N1, a zero second normal stress di�erence N2 and
a potentially high extensional viscosity �E, (indeed �E becomes in�nite at a �nite value of
the strain rate!). These features encouraged the use of the model in attempts to simulate the
provocative experimental results on Boger �uids provided by Boger himself and others (see,
for example, Reference [6]).
Integral constitutive models provide an alternative description of non-Newtonian elastico-

viscous response, which is in many ways more suggestive and versatile than that provided by
di�erential models such as (2). With this in mind, we show the equivalent integral equations
for the Oldroyd B model (cf. [7]):

�ik =
2�0�2dik
�1

+
2�0(�1 − �2)

�21

∫ t

−∞
exp[−(t − t′)=�1] @xi@x′r

@xk
@x′r

dmr(x′; t′) dt′ (10)

where x′i is the position at time t
′ of the �uid element that is instantaneously at the point xi

at time t.
Except for special classes of �uids such as the Boger �uids, the vast majority of non-

Newtonian elastic �uids manifest a shear-thinning response in a steady simple shear �ow,
with the corresponding shear stress �xy being a non-linear function of shear rate �̇. The drop
in viscosity with shear rate is often extravagant.
Clearly, the Oldroyd B model is incapable of simulating the behaviour of shear-thinning

liquids and more complex models have to be employed. There is no shortage of contenders in
this connection, but the models we shall focus upon in the present context are those associated
with the names of Phan-Thien and Tanner (see, for example, Reference [8]). These so-called
PTT models have constitutive equations which, in our case, have

f= exp
[
�
�1
�1
trace(T (2)ik )

]
(11)

and the same upper convected time derivative as in Equation (2).
To illustrate some of the new challenges provided by elastic liquids, we write down the

governing equations for the simplest relevant constitutive model, namely the UCM model
(cf. References [1] and also [9]). If u and v are the steady velocity components in the Cartesian
x and y directions, we have, in the absence of body forces, the following (non-dimensional)
governing equations:

Txx

[
1− 2We @u

@x

]
+We

[
u
@Txx
@x

+ v
@Txx
@y

]
− 2WeTxy @u@y =2

@u
@x

(12)
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Tyy

[
1− 2We @v

@y

]
+We

[
u
@Tyy
@x

+ v
@Tyy
@y

]
− 2WeTxy @v@x =2

@v
@y

(13)

−WeTxx @v@x −WeTyy @u@y +We
[
u
@Txy
@x

+ v
@Txy
@y

]
+ Txy=

@u
@y
+
@v
@x

(14)

−@p
@x
+
@Txx
@x

+
@Txy
@y

=Re
[
u
@u
@x
+ v

@u
@y

]
(15)

−@p
@y
+
@Txy
@x

+
@Tyy
@y

=Re
[
u
@v
@x
+ v

@v
@y

]
(16)

@u
@x
+
@v
@y
=0 (17)

where Re is the Reynolds number and We is the so-called Weissenberg number, given by

We= �1
U
d

(18)

U being a characteristic velocity and d a characteristic length.
We immediately see the �rst major departure from the Navier–Stokes equations (which

correspond to We=0 in (12)–(17)), namely that we are now faced with six equations in six
unknowns, rather than the three in conventional CFD. In the corresponding integral formula-
tion, there are essentially �ve equations in the �ve unknowns: u, v, p and the two displacement
functions x′ and y′.
One would have thought that numerical simulations for the simplest constitutive models

would have been the most straightforward to carry out, but that has not turned out to be the
case. The Oldroyd B and UCM models introduce serious numerical challenges, associated in
part with their extravagant extensional viscosity behaviour and constant shear viscosity. The
problems are alleviated to some extent by the use of more complicated models, such as the
PTT model shown in Equation (11), which cap the extensional viscosity levels and predict
shear thinning.
Interestingly, the initial enthusiasm for the use of simple Oldroyd=Maxwell models to repre-

sent the behaviour of Boger �uids has also evaporated with time (see, for example, Reference
[10]), and more complicated models are now preferred for this reason also. That is not to
say that simulations for simple models are out of vogue. Quite the contrary! The associated
problems are still seen as signi�cant challenges, which have to be resolved if computational
rheology is to gain self-con�dence and achieve scienti�c respectability.
Mirroring experience in many �elds, initial attempts to solve rheological �ow problems

employed the �nite-di�erence technique, but attention soon moved to the more versatile �nite-
element method, where the in�uence of O C Zienkiewicz was evident (as in many other related
�elds of course!). In recent years, spectral-element and �nite-volume methods have become
increasingly more popular, especially the latter. The situation that existed in the mid-1980s is
captured in the text of Crochet et al. [9] and useful recent reviews are contained in References
[11, 12].
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It is undoubtedly true to say that the birth of computational rheology as we know it today
can be traced to the �rst successful uses of implicit di�erential constitutive equations, like
(2), or their integral equivalents, in the solution of non-trivial �ow problems involving abrupt
changes in geometry.
So far as di�erential models are concerned, the �rst successful attempts were performed

for steady �ows by Perera (see, for example, References [13, 14]) using �nite di�erences and
by Kawahara (see, for example, Reference [15]) who employed the �nite-element technique.
Solutions for integral models came later (see for example, References [7, 16, 17]).
The stage was set at this time for the dramatic surge of interest in the �eld which shows no

sign of abating (see, for example, Reference [1, Chapter 8]). Interestingly, the �rst successful
solutions for time-dependent problems were associated with University of Wales, Swansea,
with the now Registrar, P Townsend, providing solutions for a problem with one space variable
in 1973 and with two space variables later in 1984 [18, 19].
Looking back over the short history of computational rheology, one can pinpoint speci�c

developments that have become major signposts. For example, the stress splitting by Perera
(see, for example, References [13, 14]), for those models that do not have a readily identi�able
Newtonian (solvent) contribution, was important in recovering the elliptic operator for the
vorticity in the simulations. Quite simply, the extra stress tensor Tik is split in the following
way:

Tik = Sik + 2�dik (19)

where � is a reference viscosity, and Sik becomes the stress variable of relevance in the
numerical codes.
In the case of abrupt changes in geometry, it was quickly realized that ‘corner singularities’

for elastic liquids presented signi�cant challenges that are still not completely resolved. At the
same time there have been important contributions on the subject from References [20–22].
However, we still await a convenient ‘singular element’ treatment that can be readily �tted
into numerical codes.
A related problem is that of the thin ‘stress boundary layers’, which occur even in relatively

smooth �ow problems for highly elastic liquids (see, for example, Reference [2]).
A further complication, which is essentially suggested by experimental evidence, is that

seemingly two-dimensional steady problems, like axisymmetric contraction �ow, often need
to be treated as three dimensional and unsteady. Of course, there are famous instances where
this complication arises in Newtonian �uid mechanics; but rheology certainly adds new and
provocative examples to the list.
By far the most serious obstacle to obtaining simulations for meaningful �ow conditions was

the so-called high Weissenberg number problem (HWNP). Referring to Equations (12)–(18)
as a typical set of equations, there is a (frustratingly low) upper limit on the Weissenberg
number We above which numerical algorithms fail. This issue bares close resemblance to
the classical up-winding problem associated with the discretization of convection–di�usion
equations. Here, equation-system type arises, a central theme that pervades computational
rheology and separates it from classical CFD (see Section 4).
A discussion of the HWNP at an IUTAM meeting in 1978 was the basic motivation for the

creation of a series of International Workshops on the Numerical Simulation of Viscoelastic
Flow. These have continued at approximately 2-year intervals and still provide the focal point
for discussion on challenges in computational rheology (i.e. without the need to continually
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‘set the scene’, something which is clearly necessary in a more general conference context.)
Solutions to the HWNP have gradually evolved since 1978 and the underlying causes for the
breakdown are now reasonably well understood (see, for example, Reference [1]). However,
that is not to say that the problem has been completely resolved! Certainly, convergence with
mesh re�nement is viewed as an absolute necessity in this connection.

3. THE CHALLENGE

To illustrate the distinctive challenges confronting computational rheologists, we shall limit
ourselves to one, seemingly simple, �ow regime, namely that associated with �ow through
contractions for highly elastic liquids. The experimental literature on the subject is vast but
we would want to draw particular attention to the pioneering work of Boger, which has been
well captured in a text entitled ‘Rheological phenomena in focus’ [6]. In the axisymmetric
case, it consists of two capillaries, with an abrupt contraction between them. In the planar
case, the capillaries are replaced by planar channels, which are regarded as being of in�nite
extent in the third dimension. The ratio between the two diameters in the axisymmetric case
and the two channel widths in the planar case is called the contraction ratio, which we denote
by �.
A � value of 4:1 may be regarded as having relevance in the Newtonian case, in the sense

that, for ratios greater than 4:1, there are no essential changes to the �ow characteristics. This
is not the case for highly elastic liquids, and contraction ratio is found to be an important
variable in the associated experiments, far in excess of 4:1.
The salient-corner vortex, which is present even in the creeping �ow of Newtonian liquids,

can grow in size and strength when the �ow rate is increased in the case of elastic liquids,
leading to the phenomenon of vortex enhancement, which can sometimes reach extravagant
proportions (see, for example, Reference [6, Chapter 3]).
Often (but not always) a so-called ‘lip vortex’ is formed near the abrupt contraction. When

this appears, it is usually a dominant in�uence and, on further increases in �ow rate, it
encapsulates the salient corner vortex, again leading to vortex enhancement.
Interestingly, for constant-viscosity Boger �uids, vortex enhancement is clearly evident in

axisymmetric contractions, but is absent in the case of planar contractions. On the other hand,
shear-thinning polymer solutions show vortex enhancement in both axisymmetric and planar
contractions.
The whole situation is still under active experimental investigation and the challenges to

computational scientists are evident. At the very least, it is incumbent on computational rhe-
ologists to be able to simulate the provocative di�erences between constant viscosity and
shear-thinning elastic liquids and between behaviour in axisymmetric and planar contractions.
It seems that vortex enhancement is always accompanied by an extra pressure loss (over

and above that expected on the basis of shear-viscosity alone). This is sometimes called
the Couette correction, and it can be severe. It must be conceded that the observed large
increases in Couette correction usually encountered in the case of highly elastic liquids have
been reluctant to submit to numerical simulation!
It is clear that the challenges confronting CFD workers, even for relatively simple �ow

regimes, are non-trivial and it is true to say that progress in the area has been relatively
slow.
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4. SOME RECENT SIMULATIONS FOR CONTRACTION FLOWS

4.1. Background

The particular case study chosen for illustration is that of contraction �ows, with a geometric
contraction ratio of 4:1. Both sharp and rounded corners are considered under planar and
axisymmetric con�gurations.
Reviewing the expansive literature on contraction �ows, we consciously restrict attention

principally to the creeping �ow of Oldroyd-B �uids through planar abrupt 4:1 contractions
(with sharp re-entrant corners). We begin by �rst citing two valuable contributions from
Marchal and Crochet [23, 24], with a coupled �nite-element scheme, a steady formulation, and
a Newton–Raphson iteration. Hermitian elements were introduced in the 1986 paper and found
to enhance the limit of convergence in De (to 7.39) over a more conventional Lagrangian
element choice (which gave a limit of Deborah number De=2:1).‡ The Hermitian approach
includes continuous representation for velocity gradients. A lip-vortex was detected with the
Hermitian scheme at De=3:2, that increased by a factor of 5 in intensity at the higher value
of De=6:04. An increasing trend was also observed for the salient corner vortex over the
same range of De. In the subsequent 1987 article, with inconsistent streamline upwinding
(SU) and 4× 4 linear stress sub-elements, steady solutions were achieved up to a De of 20
without loss of convergence. The SU method provided only the onset of a weak lip vortex at
De=7:6. This was considered a numerical artefact by the authors, as the feature disappeared
with increase of De to 14 and above. The size and intensity of the salient corner vortex
remained weak and insensitive to increasing elasticity.
Luo and Tanner [25] compared Galerkin, SUPG and SU methods for this problem using

a decoupled �nite-element approach, concentrating on accuracy and convergence behaviour of
the di�erent solutions. A full viscous splitting was also adopted in the momentum equation.
The SU method (with 4× 4 stress sub elements) was again observed to reach the largest De
values, yielding smoothed solutions with enhanced stability, though inconsistency e�ectively
altered the constitutive model (and hence the problem). Their observations on a single mesh
were that, with increasing De, there was no evidence of a lip vortex, and that the salient
corner vortex remained weak in size and intensity.
Lip vortices were also observed with a �nite-volume scheme implemented by Yoo and Na

[26]. This involved a version of the SIMPLER algorithm based on a staggered grid system.
With increase in De, the lip vortex increased in size and intensity. The salient corner vortex
was hardly in�uenced by increasing De, though its centre of rotation was shifted towards the
slit entrance. This technique realised a critical De of 3.1. The e�ect of adding inertia was also
noted, whereupon the vortices decrease in size and strength, though lip vortices still persist.
Salient corner vortices were compressed further into the corner recess with increase in �ow
rate. At low elasticity, the lip vortex was segregated from the salient corner vortex, whilst, at
higher elasticity, lip and salient vortices co-exist within a single recirculation cell.
Transient schemes for this benchmark problem have been investigated by Sato and

Richardson [27], Basombrio et al. [28], Baaijens [29] and Olsson [30]. The work of Sato
and Richardson is based on a hybrid �nite-element=volume method with a pressure–correction

‡In the present context, the Deborah number can be seen as an alternative to the Weissenberg number We with
the same essential de�nition, noting the scale conversion De=6We for planar �ows.
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scheme and a time-stepping procedure. They observed a lip vortex as a pseudo-transient phe-
nomenon that appeared at Re=0:01, being induced by an instantaneous increase in De from
6 to 12. The lip vortex then disappeared through the time-stepping process as a steady state
was approached at the limiting value of De=12. Olsson [30] also observed a similar trend in
a transient (iterative) appearance and disappearance of a lip vortex for a Giesekus �uid with
a rounded corner, using a method-of-lines time-integration technique and a �nite-di�erence
discretization. Sato and Richardson conducted additional tests at Re=1 and 0.1, and provided
a graph of comparative performance of corner cell vortex size from the relevant literature.
Sato and Richardson comment, that at Re=1, the onset of a steady lip vortex was sensitive to
the mesh size in the re-entrant corner neighbourhood, only being detected on their �nest mesh
at De=12. Data for Re=0:01 tend to align closely with the creeping �ow results, whilst the
Re=1 results were found to reduce the detachment length. At �xed Re, there is a general
trend of marginal decrease in detachment length with increasing De. This is demonstrated
more clearly in the accurate results reported in References [31, 32].
Basombrio et al. [28, 33] have also studied the creeping-�ow problem using a transient

decoupled method based on a Lagrange–Galerkin technique for velocities and a Lesaint–
Raviart discontinuous method for stresses using linear shape functions. This is a modi�ed
version of the Fortin and Fortin [34] approach that employed quadratic shape functions. The
work of Fortin and Pierre [35] has shown that for the viscoelastic Stokes problem there
is, in addition to the standard Babuska–Brezzi condition, a further compatibility relationship
that should hold between the trial spaces in a velocity–pressure–stress formulation. This re-
quires that the gradient of the velocity space should lie within that of the stress space. Reco-
very satis�es this requirement at the continuous level. A discontinuous stress approximation
(such as DG), also satis�es this compatibility condition. Basombrio et al. [28, 33] inves-
tigated the incorporation of SU smoothing for stress, noting that its inclusion signi�cantly
in�uences the size and intensity of the salient corner vortex at a value of De=18. Longer
geometry lengths were thought necessary to proceed further in convergence to larger val-
ues of De. The SU version yields a large vortex, which is at variance to the above-cited
results. Also this linear interpolation method was compared against a characteristic-based al-
gorithm of Basombrio [28, 33] using quadratic interpolation. The quadratic form hinted at
a minuscule lip vortex at De=6, but subsequently failed to converge for a De of 6.07, whilst
the linear alternative was able to reach the elevated value of De=18, but without generat-
ing lip vortices. Baaijens [29] employed a space–time=Galerkin least squares technique with
discontinuous stress. Here, a limiting De number of 10 was observed. A stress variable trans-
formation similar to that employed in the EVSS formulation was used, though no mention
was made of vortex behaviour.
Keiller [36] selected a related problem to study—that of sink �ow into a channel with

a rounded corner. This analysis is useful as it pinpoints vortex activity near the corner, in
isolation from salient-corner vortex activity, and removes the uncertainty associated with so-
lution singularly at the re-entrant corner. Both planar and axisymmetric �ows were considered
using a fourth-order di�erential stream function formulation, a �nite-di�erence discretization,
and a decoupled method of solution. Results were presented for Oldroyd-B and FENE models,
and a full viscous stress splitting was employed in the momentum equation. A time-stepping
technique was used as an iterator for the constitutive equation. No vortices were observed
in Oldroyd-B solutions up to the limiting value of De=24, though they did appear in the
corner neighbourhood with the FENE model at around De=36. In contrast, for axi-symmetric
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�ows, a vortex was �rst detected at De=16 for the Oldroyd-B model. We note in pass-
ing that nonlinear models that display some constraint on extensional behaviour, such as the
Phan-Thien=Tanner and FENE models, have been shown to overcome moderate limiting De
convergence constraints for such complex �ows.
Purnode and Crochet [37] have produced some recent simulations with FENE models that

compare well with experiments for planar contraction �ows. Good correlation was achieved
in their shear-thinning results for sharp and rounded corners.
Mitsoulis, in a series of articles (see for example, References [38, 39]), has employed

integral K-BKZ (multi-mode) models, mainly for axisymmetric �ows, for di�erent contrac-
tion ratios and representing di�erent �uid rheology. For the 4:1 axisymmetric contraction,
monotonic increase of vortex size with �ow rate (De) was observed and the rounded corner
reduced the size of the vortex substantially. Overall, it was claimed that the integral K-BKZ
model captured experimental �ow behaviour fairly well.
In the recent work of Matallah et al. [40], with Oldroyd-B models, the numerical algorithm

featured an SUPG �nite-element method with velocity gradient recovery for the constitutive
equation. Both sharp and rounded-corner problems were addressed. For the sharp-corner case,
a lip vortex appeared at We=1, and grew in intensity with increase in elasticity. Nevertheless,
mesh re�nement minimised such lip vortices, practically removing them up to We=2. Baloch
et al. [41] and Matallah et al. [40] showed that inertia, at a level of Re=1, tends to suppress
the salient corner vortex both in size and strength, and likewise any appearance of a lip vortex.
In contrast, for the rounded-corner problem, no lip vortex was observed and the salient-corner
vortex was suppressed.
Carew et al. [42] selected both Oldroyd-B and linear PTT models to solve the 4:1 sharp-

corner problem, with the inclusion of inertia (Re=1). For �=0:02 in the PTT model, a lip
vortex appears at We=5, engul�ng the salient corner vortex at We=10, to eventually present
a single vortex at We=15. In contrast, without inertia, no lip vortex was apparent at We=5.
Also, for �=0:25 and We=10, no evidence of a lip vortex was reported.
Recent work in �nite-volume discretization re�ects these �nite-element �ndings. Phillips

and Williams [43] reported lip-vortex activity for the �ow of an Oldroyd-B �uid through
a 4:1 abrupt planar contraction, for We¿2. Alves et al. [44] reached identical conclusions for
UCM �uid in the same geometry, as did Aboubacar and Webster [31] and Xue et al. [45]
for an Oldroyd-B model (We¿1). Mesh re�nement has been a highly prominent feature in
these studies, yielding an accurate and reliable representation of vortex structure.

4.2. Application to the local scheme

Galerkin methods are optimal for self-adjoint problems and are ideal for the discretization of
elliptic operators. In contrast, �nite volume methodology has advanced considerably over the
last decade, supplanting �nite di�erences in their treatment of conservation laws. This includes
pure advection equations, and hence, have application to hyperbolic equations of �rst order
in space and time. In this area, we may cite the seminal studies on cell-vertex fv schemes by
Morton and co-workers see (for example, References [46–49]). These authors have cham-
pioned such formulations for advection, Euler and compressible Navier–Stokes equations.
In contrast to their cell-centred counterparts (cf. Reference [50]), cell-vertex schemes have
been shown to be less susceptible to spurious modes, and importantly, maintain their accu-
racy for structured and unstructured meshes. The study of viscoelastic �ow with di�erential
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constitutive models introduces mixed-type coupled di�erential systems with non-trivial
(solution-dependent) stress source terms. The approximation of such source terms presents
some provocative new challenges to fv methodology. They may dominate in some sections
of the �ow. This stands in stark contrast to the context of pure advection, for which classical
fv theory has been derived. These source terms, themselves depend upon velocity gradients,
making their accurate resolution crucial to the process as a whole.
Bearing these issues in mind, the underlying theme of the current preferred approach is to

apply �nite element (fe) methodology to the self-adjoint sections of the system, and �nite
volume (fv) schemes to the hyperbolic parts: a hybrid formulation. As such, the numerical
simulations in this review are performed through a novel �nite volume=element scheme (fe=fv)
�rst proposed in Reference [51] and further re�ned in Reference [52]. New aspects of this
approach for viscoelastic �ows include: the hybrid formulation itself; cell-vertex positioning of
variables, fv approximation on triangles and sub-cells; inclusion of solution-dependent source
terms; and consistent treatment for stress terms (�ux, source and time terms, as with fe
Petrov–Galerkin variational weighting).
A drawback to earlier fv-schemes for viscoelastic �ows has been their low order of approxi-

mation; their advantage lying in e�ciency. The favoured hybrid fe=fv spatial discretization
has been established as a second-order scheme, with some improved properties over a pure
fe counterpart. This scheme combines a cell-vertex �nite-volume scheme for the di�erential
constitutive laws with a �nite-element discretization (semi-implicit Taylor–Galerkin=Pressure–
Correction) for the mass and momentum balance sub-system. The combination forms a time-
stepping process, with a fractional-staged formulation based upon each time step, invoking
two-step Lax–Wendro� and Crank–Nicolson procedures. Four linear �nite-volume triangular
cells are formed as embedded sub-cells of each parent quadratic �nite-element triangular cell,
connecting the mid-side nodes of the parent cell. Here, we note the association with super-
convergence points (cf. Reference [40]). A similar sub-cell reference was implemented by
Marchal and Crochet [24] in the fe-context. Stress variables are located at the vertices of the
�nite-volume cells and may be used directly, without interpolation, as fe nodal values. Fluctu-
ation distribution for cell-vertex fv schemes refers to the upwinding technique that distributes
control volume contributions for each equation to provide nodal solution updates. For the
stress nodal update, we consider a �uctuation distribution contribution over the fv-triangle, and
a uniform distribution over the median dual cell. The latter is a unique non-overlapping region
associated with each �nite-volume node, a new concept arising with cell-vertex schemes.
This cell-vertex �nite-volume sub-element approach has proved itself to be an e�ective

strategy through the judicious discrete treatment of �ux, source and time terms of the con-
stitutive equation. Consistency was observed to be a key aspect. This work was novel in the
cell-vertex context, as initial developments for �ux distribution were solely for pure advection
problems, considered here under extension with source terms. Second-order accuracy was also
achieved by appealing to the parent �nite-element solution representation in evaluation of the
sub-cell �nite-volume integrals. Wapperom and Webster [51] recognized the importance of
linearity preservation to achieve high-order accuracy and Chandio and Webster [53] the role of
positivity in transient stability. Our prior studies have established accuracy properties against
analytical solutions for smooth model problems, and addressed stability issues for complex
smooth and non-smooth �ows [51, 52].
Cross-reference is made to the hybrid fe=fv study of Sato and Richardson [27] for its sim-

ilarity in philosophy, the articles by Tanner and co-workers (see, for example References
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[54, 55]), with arti�cial stress di�usion, and the discontinuous Galerkin and Galerkin least
square approach of Baaijens [11]. Under such discontinuous stress representation (with corre-
spondence to fv weighting), we also note the work of Fortin and Fortin [34] with discontinuous
quadratic interpolation and Basombrio et al. [28, 33] with discontinuous linear interpolation.
The studies of Baaijens are useful for two reasons: they point to various alternative additional
stabilisation possibilities from a Galerkin least-square approach, that may be incrementally
incorporated consistently into the formulation; also there is the strain-rate smoothing for mo-
mentum.
The literature on fv implementations for viscoelastic �ow splits into treatments of the

full system through fv and hybrid versions. We refer to Reference [51] for a review and
highlight the related hybrid scheme of Sato and Richardson [27] which employed a time-
explicit fe method for momentum and time-implicit fv for pressure and stress of cell-centred
type. Higher-order upwinding was achieved through application of a TVD �ux-corrected
(inconsistent) transport scheme to the advection terms of the stress equation, addressing the
complication of �ux–source interaction in the presence of highly elastic convection. Most fv
implementations consider established standard low-order discretization, with cell-centred or
staggered grid systems, and SIMPLER-type algorithms for steady-state solutions on structured
rectangular grids. (See the work of Tanner, Phan-Thien and co-workers who incorporated
a stabilizing arti�cial stress di�usion, reminiscent of the SU method of Marchal and Crochet.)
Such discretization essentially implies piecewise constant interpolation.
Phillips and Williams [43] and Alves et al. [44] are two recent papers that adopt the

SIMPLER-type full system fv approach for the abrupt 4:1 planar contraction �ow using stag-
gered grid systems. For an Oldroyd-B �uid Phillips and Williams used a �rst-order imple-
mentation that applies a semi-Lagrangian treatment for convection terms. This avoids the
calculation of normal stresses at the re-entrant corner. For corner shear stress, an averag-
ing procedure was applied. With mesh re�nement, it was shown that the size of the salient
corner vortex remained fairly constant, in agreement with Matallah et al. [40] and Sato and
Richardson [27], both for creeping �ow and with inertia (Re=1). On coarse meshes, Phillips
and Williams noted an absence of lip-vortex activity. In contrast, on their �nest mesh, a lip
vortex appeared around We=2 and grew as the level of �uid elasticity increased up to a
maximum value of We=2:5.
For the same �ow and a UCM �uid, Alves et al. compared �rst-order and second-order

schemes. The Alves et al. discretization avoids placing any stress variable at the re-entrance
corner. Their �rst-order implementation was able to converge up to We = 8 on a re�ned mesh,
but proved inaccurate, re�ecting a large spurious vortex structure. An alternative second-order
scheme failed to converge at Weissenberg numbers above unity on the same re�ned mesh.
This premature breakdown in numerical convergence (inhibiting advance in We) was noted by
Alves et al. to correspond to oscillations in the stress �eld. These oscillations are associated
with the use of high-order upwinding in regions of high stress gradients, and are overcome
by applying a limiting (min-mod) procedure to the stress convection (see also, Reference
[27]). In this manner, Alves et al. were able to reach a Weissenberg number of 3 on their
�nest mesh.
Most recently, the UWS work has led to an optimal implementation of this fe=fv scheme.

This involves, amongst other things, a linear representation of the stress, based on the fv sub-
cell with a non-recovered (multi-valued) stress gradient, constant per sub-cell. Velocity gra-
dients are chosen of quadratic form over the parent �nite-element (akin with velocity �elds).
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Figure 1. Numerical results for the size of the salient-corner vortex for the
Oldroyd B model in a sharp corner 4:1 contraction.

A principal issue has been the recognition of the powerful in�uence that non-conservative
area integral representation has on RT . This stands in striking contrast to conventional fv-
methodology, where conservative line integrals are preferred (such as in cell-centred
approaches). In this respect, it is e�ective to invoke multi-valued stress gradients. Lastly,
in the vicinity of sharp gradients, one can appeal to a local treatment to allow for some
degree of discontinuity, that is, say, through reduced corner integration (RCI) sampling. The
combination of these speci�c options generates the recommended fv-schemes, covered in some
detail elsewhere [31].

4.3. Some numerical simulation results for contraction problems

Using the hybrid UWS fe=fv scheme, we provide a sample of results for the benchmark prob-
lem of contraction �ow. We restrict ourselves here to a 4:1 contraction ratio, but take this
under sharp and rounded-corner instances, for both planar and axisymmetric con�gurations.
We present the corresponding solutions through streamline patterns to focus attention on the
all important issue of vortex behaviour with parameter variation. Results are presented through
increasing Weissenberg number for creeping-�ow conditions. This may be interpreted as in-
creasing the �ow rate (shear-rate) for a �xed �uid, or increasing the �uid elasticity at a �xed
�ow rate. To compare with experimental �ndings the former view is appropriate. Rheological
aspects involve predictions for viscoelastic models of the Oldroyd-B type, with constant shear
viscosity (used to represent Boger �uids), and for shear-thinning Phan-Thien=Tanner models.
The important interrogation of solution quality with respect to mesh re�nement (accuracy)

has been dealt with elsewhere in precursor articles, on the sharp-corner planar contraction
�ow for Oldroyd models and with respect to the rounded-corner alternative for Oldroyd-B
and Phan-Thien=Tanner models. In planar sharp-corner studies for Oldroyd models, a four-
tuple set of meshes reveals that consistency and accuracy is vital to the correct detection of
such solution features as lip-vortex onset and salient-corner vortex cell-size (X ). So, for exam-
ple, spurious lip vortices (numerical artefacts) were observed for We=1. These diminish and
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Figure 2. Streamlines in planar and axisymmetric 4:1 contractions for
an Oldroyd B model on the �nest mesh.

practically vanish at We=2 with mesh re�nement, but lip-vortex presence is in evidence be-
yond We=2 on the �nest meshes (mesh NM3). Clearly, great care is demanded here to make
de�nitive statements, particularly in the light of the re-entrant corner solution singularity and
the presence of sharp stress downstream boundary layers. This issue has arisen many times in
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Figure 3. Streamlines in planar and axisymmetric smooth corner 4:1 contractions
for an Oldroyd B model on the �nest mesh.

the literature, as cited above. The precise recording of vortex trends, enhancement or inhibi-
tion, is made through measures such as the salient corner vortex cell size, the non dimensional
length between the salient corner and the vortex separation line intersection with the upstream
wall. For this problem on coarser meshes, X has widely been reported as remaining constant
around 1.4 with increasing elasticity. On �ner meshing, however, vortex reduction is ob-
served, of order of 20% as We approaches 3. The relevant numerical simulations are given in
Figure 1.
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Figure 4. Streamlines in planar and axisymmetric sharp-corner
4:1 contractions for a PTT model with �=0:02.

Next, we present in Figure 2 samples of streamline patterns for the Oldroyd-B model and
the sharp-corner geometry, with rising levels of We. All results correspond to the choice of
the �nest meshes employed.
The order of presentation permits unambiguous comparison between planar and axisymmet-

ric �ows at equivalent parameter settings. We observe that salient-corner vortex inhibition is
apparent for planar �ows, as is particularly prominent beyond a We of unity to the limiting
Wecrit level of 2.8. The converse is true for axisymmetric �ows, in which vortex enhancement
is noted, signalled through size and strength. This occurs somewhat earlier in the We range
compared to planar �ows. Here, salient-corner vortex intensity is some 3 times larger than
that for the planar �ow. This �nding follows the experiments for Boger �uids, reported in
Section 3. There is clear evidence of the corner lip vortex in the planar �ow, beyond a We
of 2. This is absent from the axisymmetric �ow, though the level of Wecrit is more restrictive
than in planar.
Switching to the rounded-corner geometry in Figure 3 the above comments on salient-corner

vortex behaviour are re-echoed. In the absence of a corner solution singularity, levels of
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Figure 5. Streamlines in planar and axisymmetric rounded-corner
4:1 contractions for a PTT model with �=0:02.

Wecrit are raised so that wider ranges of We values are accessable. Planar �ow re�ects vortex
inhibition beyond a We of unity; axisymmetric �ow again manifests vortex enhancement
with a Wecrit of 2.3. For rounded-corner �ows and Oldroyd models, no lip-vortex activity
is detected. Also, since the limiting levels of We are relatively low for the Oldroyd model,
vortex intensities are not so excessive and curvature of the separation streamline is barely
evident, irrespective of planar or axisymmetric considerations, or corner shape.
For the PTT model considered in Figures 4 and 5, shear thinning is introduced. In addition,

for the conditions we have taken, the uniaxial extensional viscosity adopts a complicated form,
re�ecting strain hardening at low extension rates (0(1)) but shifting to a strain-softening form
for deformation rates beyond this level. The strain-hardening response is similar to that of
the Oldroyd model at �nite strain-rate levels. This is often held responsible for the premature
termination of numerical convergence and the manifestation of the subsequent problems that
arise due to instability.
For the sharp-corner �ow shown in Figure 4, vortex inhibition is again initially in evidence

for the planar version. This is only slight and occurs whilst We rises to 2. Beyond this stage,
vortex strength slightly increases up to a Wecrit of 2.7. A lip-vortex is again in evidence at
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Figure 6. Streamlines for high We in planar and axisymmetric rounded-corner
4:1 contractions for a PTT model with �=0:02.

and beyond a We of two. There is some indication of concave separation line curvature within
these patterns. The axisymmetric counterpart problem is distinctly di�erent in �ow structure.
A large recirculation region is present at a We of unity, occupying the whole region from
salient to re-entrant corner. With a rise of We to 2, a critical level, massive vortex intensity
ensues (13 times greater than that at We=1) and the separation streamline displays convex
shape.
The rounded-corner �ow considerably expands the We range, by at least an order of magni-

tude, to a Wecrit of 30 (see Figures 5 and 6). This permits a much richer scenario to emerge.
Generally, one observes signi�cantly larger vortices in the axisymmetric over the planar �ows
and no lip-vortex activity is apparent in either. For the planar case, vortex reduction occurs
for a We up to around 3, but by a We of 10, vortex enhancement is already quite striking.
This trend continues, rising sharply at a We of 15–30. The concave shape of the separation
streamline is lost around a We of 15, turning to convex by the level of 30, with a distinct
�ngering trend around the rounded-corner. The axisymmetric �ow re�ects major vortex en-
hancement with We increase, even for We levels lower than 3. Major increments are observed
in vortex strength between 3, 5, 10 and 15, with convex separation line curvature appearing
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at a We of 5. Fingering to and around the corner has occurred by a We of 10. Beyond a We
of 15–30, vortex intensity halves, though cell-size itself increases.
The important new information that the PTT model results provides, above those for the

Oldroyd B model, lies in the signi�cant vortex enhancement attainable in both axisymmetric
and planar contractions. This is most apparent in the rounded-corner �ows that yield signi�-
cantly wider We ranges.
We see that the trends in the numerical simulations are in encouraging agreement with the

experimental data discussed in Section 3.

5. CONCLUSION

Much progress has been made in recent years in the numerical simulation of non-Newtonian
�ow. We have illustrated some of these encouraging developments by considering �ow in
planar and axisymmetric contractions for both constant viscosity and shear-thinning elastic
liquids. Numerical simulation has been able to mirror and capture the quite dramatic features
found in the experiments.
Of course, the constitutive models we have employed are known to be too simple to rep-

resent the behaviour of the real liquids quantitatively. Also, we have not studied the provoca-
tive e�ects that are known to occur when the contraction ratio is changed in the experiments.
Finally, there remains the frustrating limitations on the Weissenberg number in the simulations.
There is clearly much work still to be done, but recent progress has been encouraging.
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